Physico-chemical property prediction of emerging pollutants: PFC and (B)TAZ for environmental distribution

Barun Bhhatarai, Paola Gramatica
QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Structural and Functional Biology, University of Insubria, Varese (Italy)
E-mail: bhhataba@gmail.com, paola.gramatica@uninsubria.it
Perfluorinated compounds (PFCs) are a family of chemicals with a long carbon chain which is predominantly substituted by fluorine. They are used in different materials as non-adhesives, waterproof fabrics, firefighting foams, etc. (Benzo)triazoles (B/TAZs) are another class of chemicals with multi-nitrogenated aromatic ring system. They are widely used in industrial processes, deicing agents (1H-B/TAZs), pharmaceuticals and pesticides. These chemicals are considered as "emerging pollutants" as they are broadly distributed in the environment because of their extensive use and are considered to be hazardous as they cause adverse effects to humans and other non-target species. Their high concern as pollutants, lack of experimental data and crucial Authorisation under REACH legislation urges for a need to maximize the information inherited in the existing data. Internally robust and externally validated QSPR models were developed for the endpoints, as also recommended under the REACH regulation, to predict large set of unknown properties for existing or not yet synthesized chemicals. The predicted compounds within the structural applicability domain (AD) were projected in a multivariate PCA plot to understand their leaching and volatility behaviour along with soil sorption partition coefficient ($\mathrm{K}_{0 \mathrm{C}}$) predicitons for B/TAZs and to understand the relationship between the studied endpoints with Critical Micelle Concentration (CMC) and Bioconcentration Factors (BCF) for PFCs.

Regression Models

 Networks (k-ANN). QSAR models developed were used to define the structural AD on large set of compounds.
MOLECULAR DESCRIPTORS: DRAGON [3] theoretical molecular descriptors (OD-3D).
QSAR MODELING: Multiple Linear Regression (MLR) and Genetic Algorithm Variable Selection (GA-VSS) using MOBY DIGS software [4] using the Ordinary Least Square (OLS) regression.
 Todeschini et al. $\left(Q_{\text {extF3 }}^{2}\right)[6]$.

(Benzo)triazoles \& Perfluorinated chemicals

$\operatorname{logWS}=13.803(\pm 1.003)-2.415(\pm 0.167) \mathrm{CIC} 0-0.444(\pm 6.43 \mathrm{E}-02) \mathrm{AMW}+1.655(\pm 0.397) \mathrm{MATS} 7 \mathrm{e}$ $\mathrm{n}=49, \mathrm{R}^{2}=83.81, \mathrm{Q}^{2}=81.15, \mathrm{Q}^{2}{ }_{E x t}=69.19-88.14, \mathrm{~s}=0.52, \mathrm{~F}=77.64$
$\log K_{\mathrm{ow}}=1.706(\pm 0.438)+2.802(\pm 0.167) \mathrm{B} 08[\mathrm{C}-\mathrm{C}]-0.689(\pm 0.103) \mathrm{nN}+1.159(\pm 0.199) \mathrm{GATS} 3 \mathrm{~m}+1.527(\pm 0.317)$ MATS1v $\mathrm{n}=64, \mathrm{R}^{2}=88.63, \mathrm{Q}^{2}=86.71, \mathrm{Q}_{\mathrm{Ext}}^{2}=80.90-94.49, \mathrm{~s}=0.62, \mathrm{~F}=115$T2
$\log V P=17.302(\pm 5.364)-15.668(\pm 1.527) B E L p 2+0.441(\pm 0.087) R B N+1.378(\pm 0.314) \mathrm{B} 09[\mathrm{~N}-\mathrm{Cl}]$ $n=33, R^{2}=80.91, Q^{2}=75.08, Q_{E x t}^{2}=63.65-73.61, s=0.82, F=40.96$
$M P=1098.25(\pm 171.06)-162.83(\pm 17.6) \mathrm{R} 2 \mathrm{e}+53.225(\pm 10.126) \mathrm{GGI} 4+26.823(\pm 3.891) \mathrm{F} 03[\mathrm{~N}-\mathrm{N}]-1693.79(\pm 381.339) \chi 1 \mathrm{~A}$ $\mathrm{n}=56, \mathrm{R}^{2}=81.32, \mathrm{Q}^{2}=77.34, \mathrm{Q}^{2}{ }_{\mathrm{Ext}}=71.93-87.58, \mathrm{~s}=0.28, \mathrm{~F}=55.5$
$\operatorname{logWS}=-0.418(\pm 1.940)-0.003(\pm 0.001) \mathrm{T}(\mathrm{F} . . \mathrm{F})+5.185(\pm 3.849)$ SIC1
$n=20, R^{2}=76.31, Q^{2}=69.13, Q_{\text {Ext }}^{2}=79.21-92.76, s=0.91, F=27.38$
P1
$\log V P=-0.16(\pm 0.02) \mathrm{F0}[\mathrm{C}-\mathrm{F}]-3.16(\pm 0.92) \mathrm{AAC}-0.64(\pm 0.40) \mathrm{nDB}+7.97(\pm 1.26)$ $\mathrm{n}=35, \mathrm{R}^{2}=90.93, \mathrm{Q}^{2}=88.21, \mathrm{Q}^{2} \mathrm{Ext}=80.36-87.78, \mathrm{~s}=0.883, \mathrm{~F}=103.6$

P2
$\log C M C=1.351(\pm 0.183)-0.30(\pm 0.018) X^{3}$
$\mathrm{n}=10, \mathrm{R}^{2}=97.35, \mathrm{Q}^{2}=95.93, \mathrm{~s}=0.164, \mathrm{~F}=293.5$
P3

Bhhatarai B., P. Gramatica, Water
Research (2011) 45, 1463-1471
$-66(18.8 \%)$ B/TAZ within the AD of models (T1-T4) and for which at least an experimental data available were studied in PCA plot. PC1: 59.9\% and PC2: 33.4\%.

- K_{oc} values were calculated when not available experimentally by using earlier published models [7]: Leaching index (LIN) where the solubility and the sorption coefficients plays opposite role, and Volatility index (VIN) which differentiates between the volatile and non-volatile compounds were studied.

Group I: short chain TAZs \rightarrow More leachable Group II: Azocyclotrin (\#23), Imibenconazole (\#46) \rightarrow More sorbed, Group III \rightarrow Less volatile. Isazofos (\#25) \rightarrow most volatile
1H-BTAZs (\#2, 9, 15, 17) located near to Group I.
Introduction of K_{OC} changes the distribution for
(\#20, 21, 27, 29, 35, 57) towards low PC1 direction

Response	RMSE $_{\text {TR }}$	RMSE $_{\text {EPI }}$
Water solubility	1.98	0.96
Vapor pressure	1.13	0.95

